If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2a^2+3a-90=0
a = 2; b = 3; c = -90;
Δ = b2-4ac
Δ = 32-4·2·(-90)
Δ = 729
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$a_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$a_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{729}=27$$a_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(3)-27}{2*2}=\frac{-30}{4} =-7+1/2 $$a_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(3)+27}{2*2}=\frac{24}{4} =6 $
| 13-7=n+13 | | n+13=13-7 | | 7x-20=2x-3(3x+12) | | 2x+4/3+1/2×=1/4×-7/3 | | 63-9x=9x-9 | | 105+x=-25 | | 1/2p-15=2/4p-3 | | 4(5y–2)=52 | | 4(2p+4)-2(5p-7)=11 | | 4x^2+x-68=0 | | 19z-14=3z-2 | | 3d+18=-4d-10 | | X(x+40)=48000 | | 27h-13=12-3h | | 9k-7=13-11k | | 7x+9=-2x-18 | | (x^2+2x)-(x-2)=2 | | 3f-8=17-2f | | 3f-8=17-2 | | 6-5y+8=4-5-10 | | 5t-9=26-2t | | 175-7x+35=125 | | 5g+9=21-g | | 7t+8=32-5t | | 10y-14=6y+30 | | 9s-17=6s+7 | | 23g+17=21g+27 | | 19j+19=15j+35 | | 14k+8=5k+89 | | 17h+8=12h+23 | | 15k+7=13k+13 | | 3+6=30m= |